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Low-frequency modulation of thermal instability 
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A Boussinesq fluid is heated from below. The applied temperature gradient is 
the sum of a steady component and a low-frequency sinusoidal component. An 
asymptotic solution is obtained which describes the behaviour of infinitesimal 
disturbances to this configuration. The solution is discussed from the viewpoint 
of the stability or otherwise of the basic state, and possible stability criteria are 
analyzed. Some comparison is made with known experimental results. 

1. Introduction 
In  a recent paper, Venezian (1969) has considered the following problem. An 

incompressible viscous fluid is confined between parallel horizontal planes, and 
is of infinite horizontal extent. An equilibrium state is maintained under the 
action of a vertical temperature gradient, which combines a uniform component 
(the classical thermal instability situation) together with a component varying 
sinusoidally in time. This equilibrium is unstable to small disturbances at  certain 
values of the relevant parameters, which are to be found. 

A similar problem was considered earlier by Gershuni & Zhukhovitskii (1963). 
In  their work, however, the temperature fluctuations obey a rectangular law, 
instead of being sinusoidal. Other special restrictions are introduced, so that the 
results are not directly relevant to those of Venezian or of the present paper. 

In  Venezian’s (1969) work the periodic component of the temperature field is 
of small amplitude compared with the steady component. The object then is to 
determine the modulating effect of the oscillation on the stability characteristics 
of the mean gradient. The solution is obtained by an approximation method 
based on the smallness of the amplitude ratio. 

One of the aims of Venezian’s paper is to compare his solution with some 
experimental results obtained by Donnelly (1964). The latter has studied the 
behaviour of disturbances in circular Couette flow between coaxial cylinders, 
when the motion of the inner cylinder consists of a small oscillation about a steady 
rotation, while the outer cylinder is at rest. Donnelly finds that the critical Taylor 
number is increased in the presence of the periodic motion, the magnitude of the 
enhancement being a function of the oscillation frequency and amplitude. 

In  particular, Donnelly ’s experiments indicate an optimum value of the 
(dimensionless) frequency at which the modulation is most effective. Venezian’s 
theory, on the other hand, does not yield any such feature, and he finds, in fact, 
that for moderate Prandtl numbers the modulated critical Rayleigh number 
increases monotonically with decreasing frequency: the enhancement appears to 
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be a maximum in the limit of zero frequency. In  view of the well-known similarity 
hetween the thermal and Couette instability problems, a qualitative corre- 
spondence between the theory and the observations might have been expected, 
and the discrepancy is rather surprising. 

In  explanation it is suggested by Venezisn that linear stability theory ceases 
to be applicable when the frequency is sufficiently small. A similar point was 
made by Rosenblat (1968) in a discussion of inviscid, time-periodic Couette flow. 
The basis of this suggestion is the following. At very low frequencies the equi- 
librium state oscillates slowly about its mean value so that, when the latter is 
close to critical, the instantaneous value of the Rayleigh number is supercritical 
during nearly half the cycle. It may therefore happen that disturbances grow to 
a sufficient size for non-linear effects to become important, in which case their 
behaviour will not be adequately described by linear theory. 

The present paper attempts to achieve two objectives: (i) To find an asymp- 
totic solution of the problem in the case of very small frequency, with arbitrary 
amplitude ratio. (ii) To interpret this solution in the light of the foregoing 
remarks. This involves a re-evaluation of the criterion applied to determine the 
critical Rayleigh number. 

2. Perturbation equations 
The bounding planes are located a t  z = 0 and z = d with respect to a Cartesian 

co-ordinate system, and, as Venezian (1969) has done, we shall take them to be 
free surfaces. The governing equations in the Boussinesq approximation are (cf. 
Chandrasekhar 1961) 

v.q = 0, 
aq 1 -+ (q.  V )  q = - - Or, + [I - a(T - TnL)] X + VV'q, 
at P, 

g + ( q . V ) T  at = K V ~ T ,  

where pm, T, are (constant) averages of density and temperature respectively, 
X = (0, 0, -9 )  is the body force per unit mass, a is the coefficient of volumetric 
expansion, and the remaining notation is standard. 

These equations admit an equilibrium solution in which q = 0, T = T(z,t)  is 

a solution of aT azT 
= K - ,  (2.4) at ax2 

- 

and the pressure p ( z ,  t )  balances the buoyancy force. The precise form of T clearly 
depends on the nature of the applied heating, and in this paper we shall restrict 
ourselves to the case where the upper surface is maintained a t  zero temperature, 
while the lower surface has a temperature which oscillates about a non-zero 
mean. (Venezian considered other situations in addition to this.) The boundary 
conditions for (2.4) then are 

I T=,!?d[ l+~cosRt]  on X = O ,  
T = O  on z = d ,  

p, e being real constants. 
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For the disturbances, we Fourier-analyze in the x y  plane, and substitute into 
(2.1)-(2.3) the expressions 

(2.6) 1 q = q(z, t )  ei(azz+ayg), T = T+ O(z, t )  ei(azz+%g), 

p = p + p ( z ,  t )  ei(azz+ayv), 

and neglect non-linear terms. After some elimination it emerges that the linear- 
ized perturbation equations can be reduced to a single equation for w, the 
vertical component of velocity. We obtain 

aT 
82 

w-gaa2-w = 0, (2.7) 

where a = (a: + aE)4 (2.8) 

is the horizontal wave-number. 

We nut 
It is useful to express the quantities involved in (2.7) in dimensionless form. 

a. 

I z' = z/d, a' = ad, t' = at, 
T' = T//?d, wf = (v/gaa2d4) w,  

and introduce the parameters 
P P d 4  

W = a d 2 / K ,  CT = V / K ,  R = - 
KV 

Substitution of (2.9) now gives in place of (2.7) the equation 

w = 0, 
cRa2 aT 

W 2  ax 

(2.9) 

(2.10) 

(2.11) 

(in which the primes have been omitted). The free surface boundary conditions 
to be satisfied by w are (Chandrasekhar 1961) 

(2.12) 

The temperature gradient @/az in (2.11) is obtained from the dimensionless 
form of (2.4) and (2.5). It is easily shown that 

(2.13) 

The solution w of (2.11) can be represented by a Fourier series in z with tirne- 
dependent coefficients. We put 

m 

w(z, t )  = z,(t) sinmm, 
m = l  

(2.14) 

each component of which identically satisfies all the boundary conditions (2.12). 
Now substitute this series into (2.11), multiply through by sinnn.z(n=l, 2, ...), 
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and integrate with respect to x over the interval ( 0 , l ) .  The outcome is a system 
of ordinary differential equations for the functions x,(t), namely 

d 2 X ,  (l+a)A,dx, 0- 
- +- (A; - Ra2)xn 

a t2  + 0 at d h ,  

eRa2v 
-~ xm(pmneit+17,ne-it) = 0 (n = 1,2,  ...), (2.15) 

WZA, m=1 

where N denotes conjugate complex, 

A, = n2n2 + a2 

and 

(2.16) 

(2.17) 

3. Low-frequency approximation 
So far no approximations have been made in respect of either e or w ,  and 

(2.15) is, apart from nomenclature, identical with that obtained by Venezian 
(1969). The latter now restricts further developments to the case e < 1,  and 
solves (2.15) by an expansion in powers of e. 

Instead of this approach, we shall in this paper obtain an approximate solution 
for w < 1. It is evident that the system (2.15) is singular as w +  0, but it is of a 
classical type amenable to asymptotic solution by standard WKB techniques. 
This approach does not limit e to small values, although there will be a restriction 
imposed later. 

We first note that the coupling coefficients pm,(w) admit expansions in powers 
of w ,  with, in particular, p,,(O) = Hence it is easy to show that the system 
(2.15) can be written 

azx, ax, (T 

at2 at A, w2- + w (  1 + v) An- +- [A: - Ra2(1  + e cos t ) ]  x, 

eRa2v O0 

_- C x,[wq~asint+w2q~1,cost+0(w3)]  = 0 (n = 1, 2, ...), (3.1) 
An m = l  

and 

In  (3.1) we now substitute the asymptotic expansions 

(3.3) 
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(where the 7, are constants representing initial values of the x,) and equate to 
zero coefficients of like powers of w.  The systems corresponding to wo, w and w2 
are found to be, respectively, 

F, . 2, = 0, (3.5) 

H, . 2, = - [S$'GA + (1 + a) A, GL + #"G,] - Ft 
eRa2a +- 2 [Gmq~Lsint+Fmq~~cost] ,  (3.7) 

A, m = l  

(3.8) 
a 

where 2, = #'2+(1+a)A,# '+-[A~-Ba2(1+ecost)] .  
An 

To solve these equations, first consider (3.5). This shows that either F, = 0 or 
2, = 0,  and if the latter holds we have a quadratic for #', with two roots for each n. 
However, it  is easy to show that the largest growth-rate is determined by the 
greater of the roots when n = 1. In  particular, when this mode is marginally 
stable, all others are damped. Hence it is sufficient to take 

2, = 0, F2 = F3= ... = 0, (3.9) 

and then we have 4' = --( t 1 + a) A, + @I + Bcost)$, (3.10) 

where 
4Ra2a 4eRa2v 

A = ( l - v ) 2 A 2 , + -  and B = -. 
A1 A1 

(3.11) 

Next consider the system (3.6), treating separately the equations when n = 1 
and when n $: 1. When n = 1, 2, = 0, and so, using (3.9)-(3.11), we obtain an 
equation for F, which, after a little algebra, is found to be 

a sin t 41;) sin t 
at - (logF1) = gB [ A + B cos t + ( A  + B cos t)4 

(3.12) 

On the other hand, when n $: 1 and 2, =k 0, equations (3.6) are algebraic expres- 
sions for the functions G,, n > 1. We find 

A, q Q  sin t 
Gn = 2B F, (n = 2,3 ,  ...). 

An 2, 
(3.13) 

Next we determine GI. This is given from the first member of (3.7), i.e. with 
n = 1. It is easily shown that 

This solution procedure can be continued indefinitely, and provides an 
asymptotic approximation for the fastest-growing mode, namely 

x, N rl e@'"[F, + wGl + . . .I, (3.15) 
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where 4,  F, and G, are given by (3.10)) (3.12) and (3.14) respectively. The solution 
is subject to a restriction, always present in the WKB method, that the coeffi- 
cient of the dependent variable in the normalized form of the differential equation 
should be free from zeros. In  the present case it is immediately clear from inspec- 
tion of (3.12) and (3.14) that we require 

Ai-Bcost $. 0 (3.16) 

in the interval of interest, which is (0,2n). Hence condition (3.16) is equivalent to 

A > B. (3.1 7 )  

This places a limitation on the possible range of c .  As (3 .1  1 )  shows, if cr = 1 we 
are restricted to E < 1;  but if c + 1, the value of e may be greater than unity, so 
long as (3.17) is satisfied. 

It is of course possible to obtain an asymptotic solution even when ( 3 . 1  7 )  does 
not hold. Such a solution will be in terms of Airy functions, as is usual in the 
WKB method when a zero is present. Because of the additional complications, 
we shall not pursue this case in the present paper, though the general discussion 
which appears below is equally applicable. 

The expression (3.15) is merely a representation of a solution to the differential 
equations (3.1)) and no conditions of stability have yet been introduced. It is 
well known (cf. Conrad & Criminale 1965; Rosenblat 1968) that alternative 
stability criteria are possible when the equilibrium state is time-periodic. I n  the 
next two sections we examine the consequences of applying two different 
criteria to the solution (3.15). 

4. Periodicity criterion 
This is a natural criterion to use in discussing the stability of time-dependent 

systems, and is the one used by Venezian (1969) in the present configuration. 
The object is to determine the value R,, say, of the Rayleigh number R for which 
the disturbance x1 is periodic with period 2n. Since x, is the least damped of the 
modes, and since (3.1) is a system with periodic coefficients to which standard 
Floquet theory is applicable, we are assured that all disturbances will decay 
when R < R,, while a t  least x1 will grow when R > R,. 

We can write this condition on x1 in the form 

and, on applying this to (3.15)) we obtain to order w2, 

Here # and GJF, are given by (3.10) and (3.14) respectively. Equation (4.2) con- 
tains no term of order w because its coefficient, log F,, is identically periodic. 

In  equation (4.2) we substitute the expansion 

R = RP = Rp+dR',1'+ ... (4.3) 



Modulation of thermal instability 391 

corresponding to which we put 

A = AO+W2A,+ ... , B = BO+W2B,+ ..., (4.4) 

where, by (3.11) 

p ,  B,=€- A ,  = (l-o-yA;+----- 
4a2~R‘O) 

A1 
(4.5) 

We now insert these forms in the above-mentioned expressions for q5 and GJF, 
in (4.2). When coefficients of like powers of w are equated in the latter, we obtain, 
to order u2. 

and 

- 71( 1 + (T) A, +;/zn(A,+Ro C 0 S S ) i  as = 0 

2= A,+B,coss ,ds+ ‘(271)--(0)] iJ0 (A,+B,coss)i- [Z! p, w = o  

0 

= 0. (4.7) 

Equations (4 .6)  and (4.7) serve to determine R$’) and R%) respectively in terms 
of the other parameters. 

The integral in (4.6) is an elliptic integral, and hence (4 .6 )  becomes 

;.( 1 + (T) A, = 2(A0 + B,)+ E ,  (4.8) 

where E is the complete elliptic integral of the second kind, dependent on a 
parameter k defined by 

(cf. Byrd & Friedman 1954). Since E = E(k)  is tabulated, the value of R$” is 
easily obtained numerically. 

Equations (4.5), (4 .8 )  and (4.9) show that RF) is a function of the three para- 
meters a2, (T and B ,  and its variation with each of these is now considered in turn. 
I f  we write 

k2 = 2B,/(A, + B,) (4.9) 

R, = A;/a2, (4.10) 

which is the critical Rayleigh number of the classical BBnard problem, whose 
critical wave-number is given by 

a2 = 1712 2 ,  (4.11) 

we can easily show that equations ( 4 . 8 )  and (4.9) can be expressed in the form 

n2( 1 + C T ) ~  = 4[( 1 - ( T ) ~  + 4 ( ~ (  1 + B )  R$’)/R,] E2 (4.12) 

with (4.13) 

Since these two expressions do not contain a explicitly, it follows that R$’) and R, 
have the same wave-number dependence in the sense that the critical value of 
a for both of them is given by (4.11). 

In  the nubsequent discussion this critical wave-number will be understood, so 
that R, in (4.12) and (4.13) has the value 

R, = 27n4/4. (4.14) 
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We next turn to the variation of R$') with a. It is easy to verify'analytically, 
from (4.12) and (4.13)) that the quantity R$"/Rc is a maximum whena = 1 (for 
arbitrary, fixed E ) .  This means that in the limit w+O the enhancement of the 
critical Rayleigh number is greatest when a = 1.  The actual variation of R$)/R, 
over a range of values of a has been calculated numerically, and is illustrated in 
figure 1 for a typical value of E ,  namely, e = 1.  

U 

FIGURE 1. Periodicity criterion: R',"'/Rc as a function of u, with t: = 1. 

Finally, we consider the variation with e. For the purposes of illustration, it is 
sufficient to take the peak modulation value CT = 1.  In  this case (4.12) and (4.13) 
reduce to the simple forms 

R(0) 772 2e 
A= and k2 =- 
R, 4 ( 1 + e ) E 2  1 + € '  

(4.15) 

These are now evaluated numerically, and figure 2 shows the behaviour of Rf'/Rc 
in the range 0 6 E < 1. 

We may mention in passing that an alternative simplification of (4.12) is 
possible when e < 1. Using the series expansion for the elliptic integral, we 
obtain 

(4.16) 

which is identical with the result obtained by Venezian (1969). 
It has been noted earlier that the correction RZ) to the critical Rayleigh 

number can be determined from (4.7). The evaluation of the various terms in 
this equation can be accomplished in terms of elliptic functions and integrals, and 
is straightforward, though laborious. We shall not give any details here, but 
rather state the two main features which emerge from the calculations: (i) For 
the entire ranges of E and 0- under consideration, RF) is found to be negative. This 
means that the enhancement is a maximum when w = 0,  which, as has been 
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mentioned in $1,  does not agree with the observations of Donnelly (1964). 
(ii) The incremental ratio R$)/R$) is very small, generally O( This is why 
we do not feel it worthwhile to pursue the details here; when E < 1, they are 
given by Venezian ( 1969). 

0 0.2 0.4 0.6 0.8 1.0 
E 

FIGURE 2. Periodicity criterion: Rf’/Rc as a function of B, with cr = 1. 

It is relevant now to consider whether periodicity is a suitable criterion of 
stability in the present situation. When R < Rp the solution obtained above is 
certainly quasi-asymptotically stable. That is, any infinitesimal disturbance, 
whose initial value vl is less than some number 7, tends to zero as t+m. It is, of 
course, not possible to determine q ;  it corresponds to the maximum amplitude 
of those disturbances for which linearization is valid. 

It can also be said that disturbances are stable (in the Lyapunov sense) for 
R < Rp, in that we can find a number i j  such that all disturbances with ql < i j  can 
be made to remain within prescribed bounds at  all times t .  This property, how- 
ever, is subject to the following qualification. The form of the solution shows that 
when w is small and R is close to Rp the quantity e@iw oscillates between very 
large and very small values. In  the limit w-+ 0 this oscillation tends to infinity. 
It follows that if lxll is to have a given finite bound, its initial value must be 
chosen sufficiently small. In  particular, fj will need to depend on w ,  with a varia- 
tion of the form e-llW, and cannot be prescribed independently of o. Thus, 
although we can achieve stability, we cannot ensure stability of any disturbance 
uniformly with respect to w as w + 0. 

If, on the other hand, we consider the class of disturbances specified by q, we 
may have sufficiently substantial growth during some interval of time for the 
linear theory to break down. In  the next section we suggest how it might be 
possible to modify the stability criterion so as to include the class 7 within linear 
theory. 
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5. Amplitude criterion 
We now propose a criterion that infinitesimal disturbances should be stable 

uniformly with respect to w.  The object of this criterion is to  prevent the ampli- 
tude of the least stable mode, xl, becoming too large during any part of its cycle. 

Let the new critical Rayleigh number be R,. Then obviously R, < RP, and 
the mode x1 will have the form of a damped oscillation. Let and(x,) max be 
the values of x1 a t  a successive minimum and maximum respectively, occurring 
at t = r- and t = 7+, say. Then we can exprcss our ‘amplitude criterion’ by 
stating that the disturbance is stable if 

log[&] d M ,  

where M = O(1) as w+O. The equality sign in (5.1) corresponds to  marginal 
stability. 

From (3.15), 

so that (5.1) takes the form 

(5.3) 

The times t = r a t  which xl(t)  is stationary are given by the zeros of x;(t), that 
is, by the equation 

(5.4) 

Equations (5.3) and (5.4) have now to be solved aimultancously. To do this we 
assume an expansion for the critical Rayleigh number in powers of w ,  which in 
this case turn out to  be non-integral powers. We put 

R = R, = Rc,O,+uNRf’+ ..., (5 .5 )  

A = A , , + W ~ A ~ +  ..., B = B , , + W ~ B , +  ..., (5 .6 )  

where N is t o  be determined. Corresponding to  ( 5 . 5 )  we write 

where the A’s and B’s are as defined in (4.5), except that R$), R$’ are replaced 
by R‘,’, Rg) respectively. 

In addition, the consecutive stationary times r-, r+ have the following 
property. If t = 0 is taken as an arbitrary reference point, then r- and r+ 
coalesce to t = 0 when o-+0.t This is apparent from consideration of (5.3) and 
(5.4) in thc limit w + O :  

9k+) = $(T-), $’It=? = 0. (5.7) 

-f The zeros must be obtained from an analysis of (3.10), which shows that their 
locations depend on w .  
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Consequently we may write 
7 = O+wtNTl+.... 

(We have circumvented some algebra here by assuming a power of w which is 
justified a posteriori.) 

Now substitute ( 5 4 ,  (5.6) and (5.8) into (5.3) and (5.4), and equate coefficients 
of like powers of w. First consider (5.4). The two leading equations, corresponding 
to the powers wo and wN respectively, are found to be 

- 
and 

Equation (5.9) gives immediately 

RF) = Rc/( 1 + 6 ) .  (5.11) 

This result, which could have been anticipated, is the quasi-steady formula: it 
states that the temperature gradient is not unstable at any point of the cycle. 

Using (4.5) in (5.10), we have 

(5.12) 

Now consider (5.3). This can be written 

for marginal stability. From (3.10) and the preceding results, we easily show that 

Substitution of this into (5.13) gives 

N = $  

and 

(5.14) 

(5.15) 

(5.16) 

Finally, we substitute (5.11), (5.15) and (5.16) into (5.5). This now becomes 

where 

R, = ~ [ l + d . p +  ...I, 
( l + E ) U 2  

(5.17) 

(5.18) 

Equation (5.17) gives the value of the critical Rayleigh number according to 
the amplitude criterion stated above. This value is naturally indeterminate to 
the extent that the constant M is not specified within the criterion. The qualita- 
tive trend, however, is clear: the Rayleigh number increases with increasing w ,  
commencing with the quasi-steady value at  w = 0. 
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It is also apparent from (5.17) that the critical wave-number is in this case 
subject to a second-order modification, of order wp. The exact form again 
depends on the undetermined constant M .  

The nature of the solution (5.17) is illustrated in figure 3. For definiteness, we 
have chosen M = 2.25, which corresponds to a ten-fold amplification of the dis- 
turbance. Figure 3 shows the variation of RJR, with w ,  in the range 0 < w < 1, 
€or several values of e and with cr = 1. 

FIGURE 3. Amplitude criterion: R,/Rc as a function of o, with u = 1, M = 2.25, 
u2 = $n2, and for values E = 0.1, 0.3, 0.5. 

6. Conclusions 
The discussion of the preceding two sections has been concerned with the 

interpretation of the asymptotic solution for small w ,  and can be summarized 
as follows. For a certain class of disturbances (those for which linearization is 
valid and whose initial values are independent of frequency) the periodicity 
criterion is a suficient condition for  instability, in that the inequality 

R > Rp (6.1) 

ensures asymptotic growth of the disturbances according to linear theory. 
On the other hand, the condition 

R < R, (6.2) 

can be regarded as a suficient condition for stability (on linear theory) for the 
same class of disturbances, in the sense that their magnitude a t  any instant can 
be a priori restricted. 
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In the case R, < R < Rp (6.3) 
our solutions predict that these disturbances decay as t -+ 00, but have extreme 
oscillations at finite t for u-+ 0. It is not possible to predict the actual behaviour 
of such disturbances without a non-linear analysis. That is, we cannot say 
whether non-linear effects tend to stabilize, by decreasing the amplitude of the 
oscillations, or to destabilize, by reinforcing them. 

FIGURE 4. Variation of Ra/Rc and R,/Ro with o (extrapolated), with u = 1, M = 2.25, 
aa = &r2, and for values E = 0.1, 0.3, 0.5. 
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i l  I I I I I I I 

5 10 15 20 25 30 35 40 
w 

FIGURE 5. Variation of Ra/Rc and R,/Ro with w (extrapolated) with u = 1, M = 2.25, 
a2 = in2, E = 0.5. 
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Finally, when R < R, there is a class of disturbances which not only decay as 
t --f CQ but also have finite bounds on their variation. This class, however, contains 
only disturbances with frequency-dependent initial values, and becomes vanish- 
ingly sinall as w + 0. 

It follows that the question of which criterion is relevant to an experimental 
result can only be answered in terms of which disturbances are observed, and 
this, of course, is not known. In  this sense, therefore, the problem remains open. 

In  figures 4 and 5 we have represented R, and R, on the same diagram, using 
R, at the lowest values of w and R, at  slightly larger values. Figure 4 illustrates 
these quantities for various values of e, while figure 5 depicts them, on a different 
scale, a t  c = 0.5. In  both figures the solid lines refer to R, and the broken line 
to R,. 

Although these graphs are somewhat speculative, and can only be qualitative, 
because of the indeterminacy in R,, it is interesting to note that the combination 
of R, and R, described above yields a value of w a t  which the enhancement is 
a maximum. With M = 2.25 (see 4 5 above), this value turns out to be o = O(l) ,  
which is in broad agreement with Donnelly’s experimental results. 

It may therefore be inferred that at  low frequencies the large oscillations 
implied in the periodicity criterion do in fact lead to instability, at  any rate in 
the particular experiment under consideration. 
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